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A B S T R A C T  

A PSG group is one in which the number of subgroups of given index is 
bounded by a fixed power of this index. The finitely generated PSG groups 
are known. Here we prove some properties of such groups which need not 
be finitely generated. We derive, e.g., restrictions on the chief factors 
(Theorem 1) and on the number of generators of subgroups (Theorem 5). 

Let the residually finite group G enjoy the property, that  for each natural  num- 

ber n it contains only finitely many subgroups of index n, say an(G). Such a 

group is termed a p o l y n o m i a l  s u b g r o u p  g r o w t h  group ( P S G  group), if the 

function an(G) is polynomially bounded, i.e. there exists an exponent s, such 

that  an(G) < n s, for each n. The finitely generated PSG groups are determined 

in [LMS]: they are virtually soluble of finite raak. About non-finitely generated 

PSG groups it is stated in [LMS]: "such groups are unlikely to have simple charac- 

terisation". Nevertheless, some properties of these groups are known, and in this 

paper,  which is in the nature of an appendix to [LMS] (and to its predecessors 

[LM2] and [MS]), we add a few more. 

First, applying and extending results of [MS], we give some information about  

finite chief factors of PSG groups. In the next section we investigate the relation- 

ship between the notions of polynomial subgroup growth, finite generation, and 

* Partially supported by a BSF grant. 
Received March 1, 1992 and in revised form January 25, 1993 

373 



374 A. MANN Isr. J. Math. 

having bounded rank. This is most conveniently done in the context of profinite 

groups. We show that a group is PSG un i fo rmly ,  in the sense that all subgroups 

of finite index satisfy the same inequality for the number of subgroups, if and 

only if it has bounded upper rank. We end by showing, that even though the 

number of generators of subgroups of PSG groups need not be bounded, this 

number increases rather slowly with the index. 

NOTATION AND TERMINOLOGY. By a ch ie f  f a c to r  of a group G we mean a 

group M/N, where M and N are normal subgroups of G, and M/N is a minimal 

normal subgroup of GIN. If we assmne only that M and N are subnormal, 

but  require also N to be a maximal normal subgroup of M, then M/N is a 

c o m p o s i t i o n  fac tor .  Finally, if ]G : MI and IG : N I are finite, we say that 

M/N is an u p p e r  chief (or composition) factor. If M/N is a non-abelian finite 

chief factor, let C = Ca(M/N). Then G/C is the finite group of automorphisms 

that G induces on M/N, and it contains a normal subgroup I/C consisting of 

all the inner automorphisms that M induces on M/N. Then I/C ~- M/N, so all 

non-abelian finite chief factors are isomorphic to upper chief factors. By d(G) we 

denote the minimal number of generators of G, and the r a n k  and u p p e r  r a n k  

of G are 

rk(G) = max(d(H) I H is a finitely generated subgroup of G), 

urk(G) = max(rk(F)  ] F is a finite factor group of G). 

If G is a profinite group, we meaal always by "subgroup" a closed one, and by 

"generators" a set of topological generators. With these conventions, we define 

d(G), rk(G), and PSG as for discrete groups. It is known then that the rank 

and upper rank of a profinite group are the same, therefore the upper rank of a 

discrete group is equal to the raaxk of its profinite completion. We use the term 

"proso lub le"  as an abbreviation for "p ro- ( f in i t e  so luble)" ,  i.e. an inverse 

limit of finite soluble groups. The core  CoreaH of a subgroup H of G is the 

maximal normal subgroup contained in H. An equality containing the sign "=:" 

serves to define its left hand side. 

1. Let G be a group of polynomial subgroup growth. Theorem 4.1 of [MS] states 

that  there exists a number m, depending only on the subgroup growth function of 

G, such that all upper non-abelim~ composition factors of G are either sporadic, 

alternating of degree at most m, or Lie type groups, of Lie rank at most rn, and 

defined over a field of dimension at most m over its prime subfield. Moreover, 
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all upper  non-abelian chief factors of G are direct products of at most m simple 

groups, and G contains a noruml subgroup of index at most m, in which all 

non-abelian upper  chief factors are simple. 

THEOREM 1: Let G be a PSG group. Then, in the notation just applied, the 

number m can be chosen ha such a way that the abelJan upper chief factors are 

also direct products of m simple gToups at most (i.e. such a chief factor is of 

order pk, for some prime p, where k < m). 

We need some preliminary results. 

LEMMA 1.1: Let G be a finite group whose composition factors are restricted 

in the same way as in Theorem 4.1 of[MS] O.e. as detailed before Theorem 1). 

Then there ex/sts a number  t, depending only oi2 m, such that i f  V is a completely 

reducible finite faithful module for G, then IGI < IYl t. 

This is Corollary 3.3 of [BCP]. Indeed, the assumption that  the Lie type com- 

position factors are defined over fields of bounded dimension is unnecessary in 

this result. 

The following is essentially a refornmlation of Lemma 1.1. 

LEMMA 1.2: Let G be as in Lemma 1.1. Let V be a finite faithful module for G 

of characteristic p, and assume that Op(G) = 1. Then Ial _< IVl', for the same t 

as in Lemma 1.1. 

Proof: Let W be the direct sum of the composition factors of V. Then W is a 

completely reducible G-modtde, and [W I < IVI. The kernel of the action of G 

on W is the stability group (in G) of ally composition series of V, and is thus a 

normal p-subgroup of G, so is trivial, and W is a faithful G-module. Now Lemma 

1.1 applies. | 

Remark: Conversely, for G and V as in Lemma 1.1, we must have Op(G) = 1. 

Therefore the two Lemmas are equivalent. 

Now recall that  a group X is quas i - s i m p l e ,  if X ~ = X and X / Z ( X )  is simple, 

and that  a s e m i - s i m p l e  group is a central product of quasi-simple ones. 

LEMMA 1.3: Any  finite group G has a norton/subgroup F*(G) (the generadised 

Fitt ing subgroup) such that 

1. Ca(F*(G))  <_ F*(G). 
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2. F*(G) = F(G)E(G), where F(G) is the Fitting subgroup of G, and E(G) 

is semi-simple, or E( G) = I. 

This is Proposition 1.27 of [Go]. 

LEMMA 1.4: The Schur nndtiplier of a finite simple group is generated by two 

elements. 

See Table 4.1 on p. 302 of the same book. 

LEMMA 1.5: Let G be a finite group, and let P = Op(G). I f  P >_ CG(P), then 

C =: CG(P/ff?(P)) = P. 

Proof: If x is a p~-element in C, then x centralises P,  so x = 1. It follows that 

C is a normal p-subgroup of G, hence our clahn. | 

P roof  of Theorem 1: In view of Theorem 4.1 of [MS], we may assume that the 

non-abelian upper chief factors of G are simple. Let H / K  be an abelia~ upper 

chief factor of G, and let L be a normal subgroup of G, which is maximal with 

respect to the property H N L = K. Then T =: G/L is a finite group in which 

N =: H L / L  is the unique minimal normal subgroup. Let INI = p", for some 

prime p. We assume that n > 2, and we are going to show that T has the 

following properties: 

( i )  Op(T) > Or(Or(T)). 
(ii) The rank of Ov(T ) is bounded, in terms of the subgroup growth function 

of G. 

(iii) IT/Op(T)I is bounded, in terms of the same growth function and p. 

In particular, property (ii) establishes the Theorem. 

Let F*(T) = F(T)E(T),  and write E = E(T), Z = Z(E). By assumption, 

E / Z  is a direct product of silnple groups, each of which is normal in T/Z .  Let 

X / Z  be one of these, mad let Y = X ~. If Y is simple, then it is a minimal normal 

subgroup of T, contradicting the uniqueness of N. Therefore W =: Y N Z ~ 1, 

and then N _< W, so n _< 2, by Lemma 1.4. This is a contradiction, which 

shows that E(T) = 1. Then F*(T) = F(T), mad the uniqueness of N shows that 

F(T) = Ov(T ). This establishes (i). 

Write P = Op(T), Q = RiO(P), [QI = pk. By Lemma 1.5, T / P  is represented 

faithfully on Q, so IT/PI <_ IQI t, for t as in Lemma 1.2. Since Q contains at least 

p k2/a subgroups of index p[k/2], the PSG assmnption shows that k is bounded. 

Then the inequality for IT~P[ shows (iii). 
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Now let r =rk(P) .  Then we know that P contains a normal subgroup R with r 

generators such that IP : RI < pr(,+,os r) ([LM2], proof of 1.2) and again counting 

subgroups of R bounds r, thus establishing (ii), and with it our original claim. 
| 

2. Any residually finite group G is naturally embedded in a profinite one, its 

completion, which we denote by G. These two groups have the same finite quo- 

tients. Moreover, ~ is a co,npact group, and as such has finite Haar measure. 

We normalise this measure so that G has measure 1, and is thus a probability 

space. But note that the probabilistic argument below can be recast, if one so 

desires, as a simple counting argument. 

THEOREM 2: Let G be a PSG group. Then there exists a number d, such that 

all finite factor groups of  G ceal be generated by d elements. 

Proof: The claim is equivalent to G being generated (as a topological group) by 

d elements. Suppose then that an(G) < n s, for some s. Choose d large enough 

so that E,,>la, , (G)/n a < 1. If d elements of G do not generate it, there exists 

some proper subgroup of finite index containing this d-tuple, and the probability 

of this happening is bounded by the above sum, so the set of d-tuples generating 

has positive measure, and in particular is not empty, and G is generated by d 

elements. II 

Note that the choice of d depends only on s. 

Remark: More properties of profinite groups which are finitely generated with 

positive probability, including PSG groups, are given in [Ma]. 

Definition 1: The group G is of polynomiai subgroup growth 

un i fo rm ly ,  if there exist numbers C and s such that a,,(H) <_ Cn ~, for all 

n and all subgroups H of finite index in G. 

Definition 2: The profinite group G is of polynomial subgroup growth uni-  

fo rmly ,  if there exist numbers C and s such that an(H)  < Cn ~, for all n and all 

closed subgroups H of G. 

For finitely generated residually finite groups, the properties of having a finite 

rank, having a finite upper rank, and PSG, are equivalent. In general each of 

these properties implies the next one, but the three properties are distinct, as is 

clear from the examples in [Se] and [MS]. The situation is somewhat clarified by 
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THEOREM 3: Let G be a residually t~nite group and G its prolqnite completion. 

The following properties are equivalent: 

1. G has PSG uniformly. 

2. G is of finite upper ra32k. 

3. G is of finite rank. 

4. G has PSG uniformly. 

5. All subgroups of G are PSG. 

6. G is PSG, and either its 2-Sylow subgroup or its 3-Sylow subgroup is finitely 

generated. 

Proof: The note following Theorem 2 shows that 1. =~ 2., and it was remarked 

already that 2. and 3. are equivalent. Let G satisfy 2. and 3., with upper rank r. 

Then G contains a normal subgroup N of finite index, such that all finite factor 

groups of N are soluble, and a,~(G) < n', for some s depending only on r and 

G/N (see Theorem O, Lemma 3.1(i), and Proposition 3.3 of [MS]; also Corollary 

4 below). If H has a finite index in G, then urk(H) < r, and H / H  N N < G/N, 

so the same bound applies to an(H). Therefore 2. implies 1 ,  and a similar 

reasoning shows that it implies 4., because rk(H)  < rk(G), if H is closed in G. 

4. =~5. is obvious, mad 5. =>6. follows by Theorem 2. Assume 6. Then 

[DDMS, 6.12] shows that G has a normal subgroup N of finite index which has a 

normal p-complement, for p = 2 or 3. If p = 2, then N is prosoluble, by the Odd 

Order Theorem. If p = 3, then the only finite simple groups possibly involved in 

N are Suzuki groups, and by Theorem 4.1 of [MS] only finitely many of these can 

occur, so by changing N to a smaller subgroup of finite index, if necessary, we 

get it again to be prosoluble. Then Proposition 3.3 of [MS] shows that 2. holds. 
| 

Problem: What is the structure of groups all of whose subgroups are PSG? 

Concerning this problem, we may remark that all finitely generated groups 

which are linear in characteristic 0, and in particular free groups, are contained 

in profinite PSG groups. This follows from [Lu2], which shows that such a group 

is a subgroup of a compact p-adic analytic group, and the latter is PSG. 

We digress a little to give another application of [DDMS, 6.12]. 

COROLLARY 4: Let G be a prot~nite group, in which either the Sylow 2-subgroup, 

or both the Sylow 3-subgroup and the Sylow 5-subgroup, are finitely generated. 
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Then G is virtually prosoluble. 

For p = 2 this was already noted, and the other case follows from the fact that 

the order of the Suzuki groups is divisible by 5, hence a finite group of order 

prime to both 3 and 5 is soluble. 

Proposition 6.12 of [DDMS] and Corollary 4 can be compared with Theorem 

B of [Lull, according to which a finitely generated linear group G, for which 

some Sylow subgroup of G, for whatever prime, is finitely generated, is virtually 

soluble. Indeed it was remarked by the referee that Corollary 4 can serve to 

give an alternative proof of this result of [Lul] for the special cases when the 

assumptions of Corollary 4 hold. Thus under these assumptions G contains a 

subgroup of finite index H all of whose finite quotients are soluble. But if G is 

linear of degree n, then it is residually linear of degree n over finite fields. Now 

a soluble linear group of degree n has derived length bounded by a function of n 

only, and it follows that H is soluble with the same bound on its derived length. 

This proof applies also for characteristics 2 and 3, which are excluded in [Lul] 

(see [We] for the requisite results about linear groups). 

Returning to PSG groups, we now show that, even though the upper rank need 

not be finite (as Theorems 6.1 and 6.2 of [MS] show), the number of generators 

of subgroups of finite index increases rather slowly (recall that we always have 

d ( H ) -  1 _< [G: H I ( d ( G ) -  1)). 

THEOREM 5: Let G be a proflnite PSG group, and let din(G) = 

max(d(H)  t lG : H I <_ m).  Then 

l imd,, ,(G)/log m = 0. 

Proof." Suppose that a, (G)  < n s, let e > 0, and choose integers k and N so that 

k > s + l, s / l o g N  < e, Z n S / n k  <1"  
n > N  

Let IG:  HI = m. Then an(H) < a,,,,(G) < m~nL Write r = 1 + k + [slogNml. 

The probability that r elements of H lie in a subgroup of index greater than N 

is at most ~ , , > N m ' n ' / n  r, which is not nmre than E,,>NnS/n k < 1. It follows 

that some r-tuple of elements of H generates a subgroup of index at most N, 

and therefore 

d(H) <_ r + l o g N  _< l ogN + k  + l +( s / l og  N ) l o g m  <_ logN +k  + l +elog]G : H I . 
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Thus lim d n ( a ) / l o g n  < e, proving the theorem. | 

We note that a recent result of Shalev [Sh, 2.4] shows that for pro-p groups 
the property proved in Theorem 5 implies that G is of finite rank. Our examples 
show that  this is not the case for profmite groups in general. 
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